Analisis Preventive Maintenance Mesin Compressor dengan Mean Time Beetween Failure dan Mean Time to Repair di PT Suzuki Indomobil Motor

Authors

  • Yayan Heru Haerudin Sekolah Tinggi Teknologi Wastukancana Purwakarta
  • Wisnu Dwi Wibowo Sekolah Tinggi Teknologi Wastukancana Purwakarta

Keywords:

Preventive Maintenance, Compressor, MTBF, MTTR, Availability

Abstract

The manufacturing industry is experiencing rapid growth in technology and machine maintenance methods to improve operational efficiency and corporate competitiveness. PT Suzuki Indomobil Motor, as a motor vehicle manufacturer, utilizes various machines and equipment in its production processes, one of which is the compressor that serves as the primary air supply source. Failures or malfunctions in the compressor can lead to increased operational costs and significant production downtime. Therefore, an optimal preventive maintenance strategy is required. This study aims to analyze the effectiveness of preventive maintenance using the Mean Time Between Failure (MTBF) and Mean Time to Repair (MTTR) methods to enhance machine reliability and production efficiency. The results indicate that the compressor's availability value is above 95%, signifying that the machines are in good condition. With a more optimized preventive maintenance plan, companies can reduce repair costs, minimize downtime, and enhance machine reliability in the long term. 

Downloads

Download data is not yet available.

References

Ahuja, I., & Khamba, J. (2008). Total productive maintenance: . International Journal of Quality & , 709-756.

Andam. (2014). Kajian Reliabilitas dan Availabilitas pada Sistem Komponen Paralel. Jurnal Gaussian, 3(2), 243-252.

Dolphina. (2011). Penerapan Maintenance dan Reliability untuk Meningkatkan Kualitas dan Daya Saing Perusahaan. Jurnal Dian, 11(3).

Fatma, N. F., & Ponda, H. (2020). Analisis Preventive Maintenance dengan Metode Menghitung MTBF dan MTTR Studi Kasus PT Gajah Tunggal Tbk. Heuristic, 87-94.

Gasperz. (2014). Total Quality Management. Jakarta: PT Gramedia Pustaka Umum Jakarta.

Hafidhoh, N., & Atmaja, A. (2024). Machine Learning untuk Prediksi Kegagalan Mesin dalam Predictive Maintenance System. Jurnal Masyarakat Informatika, 15(1), 57-67.

Handoko. (1984). Dasar-dasar Manajemen Produksi dan Operasi. Yogyakarta: BPFE.

Indaryana, D. (2012). Penentuan Waktu Baku Preventive Maintenance Reestand Megtec Mesin Goss Magnum sebagai Evaluasi Penjadwalan di PT Gramedia. Jakarta: Universitas Mercu Buana.

Kusuma, Y. (2016). Effecctive Maintenance Management. Jakarta: Universitas Mercu Buana.

Malay, A., & Christopher, M. (2022). Development of Maintenance Management System for Primary Machines to Improve Productivity The Case of Technology Development Workshops. International Journal of Science and Research, 12(10), 2319-7064.

Prabowo, R. F., & Hariyono, H. (2020). Total Productive Maintenance (TPM) pada Perawatan Mesin Grinding Menggunakan Metode Overall Equipment Effectiveness (OEE). Journal Industrial Servicess, 5(2), 207-213.

Suzuki. (2020). Home Suzuki Indonesia. www.suzuki.co.id.

Theissler, A., Velazquez, J. P., & Kettelgerdes, M. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering & System Safety, 216(97), 107864.

Wibisono. (2006). Manajemen Kinerja : Konsep, Desain, dan Teknik Meningkatkan Daya Saing Perusahaan. Jakarta: Erlangga.

Wireman. (2004). Total Productive Maintenance 2nd. New York: Industrial Press.

Downloads

Published

2024-09-30

How to Cite

Yayan Heru Haerudin, & Wisnu Dwi Wibowo. (2024). Analisis Preventive Maintenance Mesin Compressor dengan Mean Time Beetween Failure dan Mean Time to Repair di PT Suzuki Indomobil Motor. Journal of Management and Industrial Engineering (JMIE), 3(2), 73–81. Retrieved from https://jurnal.sttnlampung.ac.id/index.php/jmie/article/view/146